Problem 22-10: Positive charge ($\mathrm{q}=9.25 \mathrm{pC}=9.25 \times 10^{-12} \mathrm{C}$) is spread uniformly along a thin non-conducting rod of length ($L=16.0 \mathrm{~cm}=0.16 \mathrm{~m}$). What is the electric field produced at point P, at distance ($R=6.00 \mathrm{~cm}=0.06 \mathrm{~m}$) from the rod along its perpendicular bisector?

$$
\overrightarrow{d E}=\frac{k d q}{r^{2}} \hat{r}
$$

$$
\mathrm{dE}_{\text {Left }}=\mathrm{dE}_{\text {Right }} \text { (both have same magnitude) }
$$

$$
\begin{array}{r}
d E_{x}=-d E_{\text {Right }} \sin \theta \hat{\imath}+d E_{\text {Left }} \sin \theta \hat{\imath}=\text { zero. (by symmetric) } \\
\vec{E}=\int d E_{y}=\int d E \cos \theta \hat{\jmath}=\int \frac{k d q}{r^{2}} \cos \theta \hat{\jmath}
\end{array}
$$

Using $q=\lambda x$; linear charge density. $d q=\lambda d x$

$$
r^{2}=\left(R^{2}+x^{2}\right) \text { and } \cos \theta=\frac{R}{r}=\frac{R}{\left(R^{2}+x^{2}\right)^{1 / 2}}
$$

$$
\begin{aligned}
& \vec{E}=\int \frac{k d q}{r^{2}} \cos \theta \hat{\jmath}=\int_{-L / 2}^{L / 2} \frac{k \lambda \mathrm{dx}}{\left(R^{2}+x^{2}\right)} \frac{R}{\left(R^{2}+x^{2}\right)^{1 / 2} \hat{\jmath}} \\
& =k \lambda \mathrm{R} \hat{\jmath} \int_{-L / 2}^{L / 2} \frac{d x}{\left(R^{2}+x^{2}\right)^{3 / 2}}=2 k \lambda \mathrm{R} \hat{\jmath} \int_{0}^{L / 2} \frac{d x}{\left(R^{2}+x^{2}\right)^{3 / 2}} \\
& \begin{array}{c}
\left\{\begin{array}{c}
t a k e \tan \theta=\frac{x}{R}, x=R \tan \theta \rightarrow \mathrm{dx}=\mathrm{R} \sec ^{2} \theta d \theta \\
\left(R^{2}+x^{2}\right)^{3 / 2}=\left(R^{2}+R^{2} \tan ^{2} \theta\right)^{3 / 2}=\left(R^{2} \sec ^{2} \theta\right)^{3 / 2}=R^{3} \sec ^{3} \theta
\end{array}\right\} \\
\vec{E}=2 k \lambda \mathrm{R} \hat{\jmath} \int \frac{\mathrm{R} \sec ^{2} \theta d \theta}{R^{3} \sec ^{3} \theta}=\frac{2 k \lambda}{\mathrm{R}} \hat{\jmath} \int \frac{d \theta}{\sec \theta}=\frac{2 k \lambda}{\mathrm{R}} \hat{\jmath} \int \cos \theta d \theta \\
=\frac{2 k \lambda}{\mathrm{R}} \hat{\jmath} \sin \theta
\end{array}
\end{aligned}
$$

Use $\sin \theta=\frac{x}{\left(R^{2}+x^{2}\right)^{1 / 2}}$
$\Rightarrow \vec{E}=\left[\frac{2 k \lambda}{\mathrm{R}} \frac{x}{\left(R^{2}+x^{2}\right)^{1 / 2}} \hat{\jmath}\right]_{0}^{L / 2}=\frac{k}{\mathrm{R}} \frac{\lambda L}{\left(R^{2}+(L / 2)^{2}\right)^{1 / 2}} \hat{\jmath}$
Substituted $q=9.25 p C=9.25 \times 10^{-12} C=\lambda L, L=16.0 \mathrm{~cm}=0.16 m$ and $R=6.00$ $\mathrm{cm}=0.06 \mathrm{~m}$.

$$
\vec{E}=13.86 N / C \hat{\jmath}
$$

